Accelerating advanced MRI reconstructions on GPUs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Radiosity on GPUs

We propose a novel approach to implement radiosity on GPU with specific optimizations via form-factor matrix transformations. The proposed transformations enable to reduce the amount of computations for multiple-bounce global illumination and apply DXT compression (with subsequent hardware decompression when reading formfactors on GPU). Our implementation is 10 times faster running and requires...

متن کامل

Accelerating QDP++/Chroma on GPUs

Extensions to the C++ implementation of the QCD Data Parallel Interface are provided enabling acceleration of expression evaluation on NVIDIA GPUs. Single expressions are off-loaded to the device memory and execution domain leveraging the Portable Expression Template Engine and using Just-in-Time compilation techniques. Memory management is automated by a software implementation of a cache cont...

متن کامل

Accelerating high-order WENO schemes using two heterogeneous GPUs

A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...

متن کامل

Advanced MRI reconstruction toolbox with accelerating on GPU

In this paper, we present a fast iterative magnetic resonance imaging (MRI) reconstruction algorithm taking advantage of the prevailing GPGPU programming paradigm. In clinical environment, MRI reconstruction is usually performed via fast Fourier transform (FFT). However, imaging artifacts (i.e. signal loss) resulting from susceptibility -induced magnetic field inhomogeneities degrade the qualit...

متن کامل

Accelerating QDP++ using GPUs

Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of their GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Parallel and Distributed Computing

سال: 2008

ISSN: 0743-7315

DOI: 10.1016/j.jpdc.2008.05.013